posts archive

https://jp.news.cn/20250116/9dc88fa0753f468da2fc4772c53548ec/c.html?page=1

In a large-scale deep sea smart fishery farming facility “Deep Blue 2” in the Qingdao National Deep Sea and Ocean Green Aquaculture Test Area, approximately 400,000 salmon are farmed in farming cages, with a high survival rate and healthy growth.

According to Gu Qihuan, production manager at Shandong Caijing Wanzefeng Marine Technology Co., Ltd., salmon farming requires strict environmental conditions, and it is very difficult to find suitable sea areas for large-scale farming. However, this location is home to 130,000 square kilometers of Yellow Sea cold water mass, and the water temperature in summer is 10 to 16 degrees Celsius, which is very suitable for salmon growth. Deep Blue 2 sinks to the level of the cold water mass less than 30 meters in summer and rises to the surface again in winter.

Deep Blue 2 is 71.5 meters high, 70 meters in diameter, and has a fully submerged farming area of ​​90,000 cubic meters. It is equipped with multiple smart farming equipment such as an automatic feeding system and an underwater photography system, making unmanned farming in the deep sea and distant ocean possible.

For harvest, schools of salmon are sucked up one after another onto work boats, passed through a fish-water separator, and transported to a workshop for processing. Workers place the salmon in insulated boxes filled with ice and transport them to land overnight for processing and sale.

The freshly caught salmon weigh an average of 3-4 kilograms each, and each harvest is about 5,000 fish. At the earliest, they can be delivered to major cities in China in just over 30 hours.

http://english.cas.cn/newsroom/research_news/life/202501/t20250110_898273.shtml

https://doi.org/10.1016/j.xinn.2024.100759

A new technology termed FISH-scRACS-seq (Fluorescence In Situ Hybridization-guided Single-Cell Raman-activated Sorting and Sequencing) combines species-targeting fluorescence in situ hybridization (FISH) with Raman spectroscopy, allowing for the direct identification and isolation—from environmental samples—of functional single cells and the enzymes they encode.

The research team utilized this technique to identify the cells, pathways, and enzymes from γ-proteobacteria that are actively involved in degrading cycloalkanes in marine environments. Their analysis uncovered a previously unknown P450 enzyme encoded by Pseudoalteromonas fuliginea, crucial for bioremediation efforts in aquatic ecosystems contaminated by hydrocarbons.

http://en.people.cn/n3/2025/0110/c90000-20264742.html

The world’s first carbon fiber metro train named “CETROVO 1.0 Carbon Star Express began passenger service on the Metro Line 1 of Qingdao, Shandong Province. The debut of the carbon fiber metro train marks a groundbreaking upgrade in China’s metro train lightweight technology. The carbon fiber metro train is approximately 11 percent lighter, with operational energy consumption reduced by 7 percent. And each train can reduce carbon dioxide emissions by 130 tons annually, the CCTV report noted.

The key load-bearing structures of the carbon fiber metro train, such as the car body and bogie frame, are made from carbon fiber composite materials. And this design offers multiple technical advantages, including being lighter and more energy-efficient, having higher strength, better environmental adaptability, and lower operation and maintenance costs throughout its life cycle.

Carbon fiber has advantages such as being lightweight, high-strength, fatigue-resistant, and corrosion-resistant. Its strength is more than five times that of steel, while its weight is less than a quarter of steel, making it an excellent material for lightweight rail vehicles, The use of carbon fiber materials not only enhances the strength of the car body, providing greater impact resistance and extending the structural lifespan, but also improves the vehicles’ vibration reduction and isolation, resulting in smoother operation, reduced noise, and a more comfortable ride.

The Qingdao Metro Line 1 spans approximately 60 kilometers and has 41 stations. It serves as a major north-south backbone line in Qingdao.

R&D institutions

 Universities in Qingdao

Photo: Haier Global Creative Research Center in Qingdao

http://www.vlandbiochem.com/article-5545-10977.html

On March 14, 2024, Evonik Vland Biotech (Shandong) Co., Ltd. was put into operation in Qingdao, China. The joint venture of Evonik China Co., Ltd. and Shandong Vland Biotech Co., Ltd. aims to develop and expand gut health solutions products including probiotics for farm animals in China. Evonik holds the majority with a share of 55 %.

Head of Evonik’s life science division Nutrition & Care, the Animal Nutrition business line is Johann-Caspar Gammelin.

The joint venture is headquartered in Vland Biotech Innovation Park in Qingdao, China, and Vland’s production facilities in Binzhou, Shandong Province, China., will be utilized.

“Benefiting from the strong innovation capabilities, applied technology expertise and excellent reputation of the two parent companies, we will deliver innovative products and solutions to the market, and create more value for our customers,” says Dr. Wang Xu, general manager of Evonik Vland Biotech (Shandong) Co., Ltd.

http://english.qibebt.cas.cn/ne/ns/202310/t20231027_397294.html

On Oct. 27, 2024, Prof. Juergen Popp Speaks, director of the Leibniz Institute of Photonic Technology and chair for Physical Chemistry at Friedrich-Schiller University, gave a talk at QIBEBT Distinguished Expert Forum and Visits Single-Cell Center on “Translational Biophotonics – Raman spectroscopy and AI a game changer !?” Popp elucidated the innovative technologies and potential applications of Raman spectroscopy in biophotonics, particularly its extensive use in clinical diagnostics. He emphasized the potential of multimodal methods combining Raman spectroscopy with other spectroscopic/optical technologies and how Raman can address today’s medical challenges, such as early cancer diagnosis and personalized treatments.

The visit was part of the Sino-German Scientific Partnership Program funded by the National Natural Science Foundation of China.

https://doi.org/10.1016/j.checat.2024.101169

https://english.cas.cn/newsroom/research_news/chem/202411/t20241111_694029.shtml

Seawater electrolysis has long been seen as a promising pathway for sustainable hydrogen production but has faced significant limitations due to chloride ion (Cl⁻) corrosion, which can degrade a catalyst’s performance.

Scientists from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences, along with their collaborators, have developed an efficient electrocatalyst called Co-N/S-HCS that demonstrates remarkable activity and stability in seawater electrolysis. This offers a sustainable hydrogen production solution with minimal reliance on freshwater resources.

The Co-N/S-HCS electrocatalyst utilizes an asymmetric CoN₃S₁ structure, in which each cobalt (Co) atom is coordinated with three nitrogen (N) atoms and one sulfur (S) atom. This asymmetric CoN₃S₁ configuration, optimized through density functional theory and molecular dynamics simulations, modifies the electronic distribution around the Co center compared with the symmetric CoN4 configuration, thereby weakening corrosive Cl⁻ adsorption and enhancing the catalyst’s performance in seawater-based electrolytes.

http://qibebt.cas.cn/news/zyxw/202409/t20240922_7378447.html

From September 19th to 22nd, the 17th International Clostridium Conference was held in Qingdao, hosted by the International Clostridium Conference Organizing Committee, supported by the Bioenergy Research Laboratory of Qingdao Institute of Energy, the Key Laboratory of Solar Photovoltaic Conversion and Utilization, Shandong Energy Research Institute, and Qingdao New Energy Shandong Provincial Laboratory, and co-organized by the One Carbon Biotechnology Research Center and Green Carbon Editorial Department.

Since 1990, the International Clostridium Conference has been held every two years, and this Clostridium Conference is the second time to be held in China. On the afternoon of the 19th, the executive chairman of the conference, Researcher Li Fuli, director of the One Carbon Biotechnology Research Center, announced the opening of the conference. Director Lv Xuefeng delivered a speech on behalf of the Qingdao Institute of Energy and introduced the construction and development of the institute to the delegates.

This conference invited about 150 scholars and guests from domestic and foreign academic and business circles to attend the conference, including more than 50 foreign experts from Germany, the United States, France, South Korea, the United Kingdom, Italy and other countries. The conference was divided into four parts according to the topic direction: physiology and systems biology, genetics and synthetic biology, metabolic engineering and raw material utilization, industry and new applications. More than 40 oral speakers shared the latest research results with the participants, discussed future research directions, and exchanged problems and challenges encountered in Clostridium research and industrialization engineering.

As a valuable platform for scientific exchange and cooperation, this conference will further promote the development of Clostridium research. At the same time, the successful holding of this conference is of great significance to enhancing the influence of the institute in the field of Clostridium research. (Text/Photo by Ma Xiaoqing)

http://qibebt.cas.cn/news/zyxw/202408/t20240815_7273375.html

The prize was provided on August 16 at the Qingdao Science and Technology Innovation Conference.

QIBEBT has focused for many years on the problem of high-performance tire treads which presently rely on imports of solution-polymerized styrene-butadiene rubber.

Wang Qinggang, director of the Catalytic Polymerization and Engineering Research Center of QIBEBT, and his project team have created a new material of iron-based combed styrene-butadiene rubber and invented technologies of green, environmentally friendly, controllable and stable industrial production. The Qingdao Institute of Energy has achieved the first 10,000-ton industrial demonstration of iron-based combed styrene-butadiene rubber in the world, and has completed the manufacturing demonstration and sales of more than 500,000 high-performance tires, achieving the highest level A in the EU new labeling law.

Carbon fiber subway cars shown in Qingdao

http://en.people.cn/n3/2024/0627/c90000-20186316.html A CETROVO 1.0 subway car is on display in Qingdao, east China’s Shandong Province, June 26, 2024. The CETROVO 1.0 subway car was launched in Qingdao on Wednesday. With a carbon fiber

Read more >
BACK TO