A record high! 15 Qingdao achievements won National Science and Technology Awards

http://qdstc.qingdao.gov.cn/kjdt/bskjdt/202407/t20240702_8109856.shtml

The 2023 National Science and Technology Awards were announced in Beijing. From a total of 262 projects and candidates,15 achievements in Qingdao won the National Science and Technology Award

Qingdao hosted and completed 2 award-winning projects, participated in the completion of 13 award-winning projects – Including 1 special prize, 1 first prize, 11 second prizes.

5 of the award-winning Qingdao projects are in the maritime field, namely:

  • “Key Technology Equipment and Application of Deep Sea Image Detection”
  • Offshore Petroleum Engineering (Qingdao) Co., Ltd. participated in and completed the “‘Shenhai No. 1’ ultra-deepwater gas field development project key technology and application” project, which won the first prize of the National Science and Technology Progress Award
  • “Construction and Industrial Application of Precision Nutrition Technology System for Marine Cultured Fishes” led by the Ocean University of China and participated by the Yellow Sea Fisheries Research Institute of the Chinese Academy of Fishery Sciences.
  • “Theoretical and Technological Innovation and Major Discovery of Deep Oil and Gas Exploration in Fault Zones” project, and the
  • “Key Technologies and Applications for Beach Protection and Restoration of Complex Coastal Environments” participated by Ocean University of China won the second prize of the National Science and Technology Progress Award.

In addition, Qingdao’s participation in award-winning projects has high “gold content” and broad influence. Among them, the “Fuxing High-Speed ​​Train” project completed by CRRC Qingdao Sifang Rolling Stock Co., Ltd. and CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd. won the special prize of the National Science and Technology Progress Award. The “Fuxing” high-speed train is a new generation of high-speed train independently developed by China and with complete intellectual property rights. With a maximum speed of 350 kilometers per hour, China has become the country with the fastest commercial operation of high-speed rail in the world. This record remains to this day. As of the beginning of this year, the “Fuxing” high-speed train has transported more than 2.2 billion passengers.

Enterprise innovation is the fundamental driving force and internal source of innovation. Among the Qingdao award-winners, 9 projects have enterprises taking the lead in completing and deeply participating in them. For example, the “Technological Innovation and Industrialization of Temperature and Humidity Oxygen Magnetic Multi-dimensional Precision Control of Household Preservation Appliances” project led by Haier Smart Home Co., Ltd. and participated by Qingdao Haier Refrigerator Co., Ltd. won the second prize of the National Science and Technology Progress Award; Tsingtao Brewery Co., Ltd. The project “Efficient Breeding and Optimization of Key Technologies and Applications of Food Biomanufacturing Industrial Strain”, as the main completion unit, won the second prize of the National Science and Technology Progress Award.

more insights

https://en.people.cn/n3/2025/0530/c98649-20322033.html

A platform on real-scene 3D modeling of the city of Qingdao was launched in March 2021 under the leadership of the Qingdao Institute of Survey and Mapping

Qingdao’s varied topography – marked by hilly terrain and dramatic elevation changes – necessitated the use of oblique aerial imaging to capture raw imagery and build an accurate 3D model. The project team deployed manned fixed-wing aircraft equipped with 150-megapixel, five-lens oblique aerial cameras. The aerial survey covered the entire urban area, achieving a ground resolution of 15 centimeters and maintaining more than 70 percent image overlap to maximize accuracy.

In March 2022, following expert review, the project was officially launched for citywide application. Today, the platform covers Qingdao’s entire land area – 11,000 square kilometers – as well as 800 kilometers of coastline, 49 bays, and seven inhabited islands.

The 3D simulation platform has been shared with over 60 municipal departments. It supports more than 100 key functions, including disaster prevention and mitigation, urban planning, social governance, and urban renewal. The platform also underpins over 70 digital government service applications and records nearly 100 million uses annually. As an example, at the bureau’s headquarters, staff members examined two versions of a digital model for a former mining site in Qingdao’s West Coast New Area. The comparison revealed tangible signs of ecological restoration – more vegetation and a gentler slope. Qingdao is home to 898 legacy mine sites. In the past, inspecting these sites required a full month of on-the-ground efforts. Now, with the help of the 3D model, the same work takes just five days.

Since 2023, the city has carried out annual temporal updates to the city-scale 3D simulation platform, enabling it to track urban changes with precision and support data-driven lysis and evidence-based planning.

http://english.qibebt.cas.cn/ne/rp/202504/t20250407_909473.html

https://pubs.acs.org/doi/10.1021/jacs.4c18730

A research team from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has introduced a novel membrane design that mimics biological protein channels to enhance proton transport for efficient energy harvesting. Inspired by the ClC-ec1 antiporter found in Escherichia coli, which facilitates the movement of chloride (Cl⁻) and protons, the researchers developed a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs). This ANF/COF composite forms a robust hydrogen-bonding network and features amide groups that selectively bind to Cl⁻ ions, significantly lowering the energy barrier for proton conduction.

In acidic environments, adding just 0.1% Cl⁻ ions (relative to protons) increased the membrane’s proton permeation rate threefold, reaching 9.8 mol m⁻² h⁻¹ for the efficient migration of H⁺ ions. Under simulated acidic wastewater conditions, the ANF/COF membrane achieved an output power density of 434.8 W m⁻²—one of the highest reported to date for osmotic energy generation. It also showed structural stability over 9,000 minutes (~150 hours) of operation in highly acidic media.

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml

https://www.nature.com/articles/s41467-025-59188-1

A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative membrane that mimics biological ion channels to achieve highly selective lithium ion separation from complex brines. Lithium, which is essential for batteries and clean energy technologies, is often found in low concentrations alongside high levels of sodium, potassium, magnesium, and calcium ions.

Inspired by biological ion channels, the team designed a sulfonic acid-functionalized covalent organic framework (COF)—r-TpPa-SO3H. The membrane’s randomly oriented nanocrystalline structure creates ultra-narrow, winding channels that can differentiate ions based on size and hydration energy. This unique structure enables an unconventional reverse-sieving mechanism that allows the selective passage of Na+, K+, and even divalent ions like Mg2+ and Ca2+ under an electric field while effectively blocking hydrated Li+ ions.

In laboratory tests, the membrane demonstrated remarkable Na+/Li+ and K+/Li+ selectivity, comparable to that of biological ion channels. Its performance remained stable in complex solutions, including real salt-lake brines. Under electrodialysis conditions, the membrane consistently removed major interfering ions, resulting in a lithium-enriched solution ready for downstream processing.

Back to …