World’s first carbon fiber metro train in Qingdao

http://en.people.cn/n3/2025/0110/c90000-20264742.html

The world’s first carbon fiber metro train named “CETROVO 1.0 Carbon Star Express began passenger service on the Metro Line 1 of Qingdao, Shandong Province. The debut of the carbon fiber metro train marks a groundbreaking upgrade in China’s metro train lightweight technology. The carbon fiber metro train is approximately 11 percent lighter, with operational energy consumption reduced by 7 percent. And each train can reduce carbon dioxide emissions by 130 tons annually, the CCTV report noted.

The key load-bearing structures of the carbon fiber metro train, such as the car body and bogie frame, are made from carbon fiber composite materials. And this design offers multiple technical advantages, including being lighter and more energy-efficient, having higher strength, better environmental adaptability, and lower operation and maintenance costs throughout its life cycle.

Carbon fiber has advantages such as being lightweight, high-strength, fatigue-resistant, and corrosion-resistant. Its strength is more than five times that of steel, while its weight is less than a quarter of steel, making it an excellent material for lightweight rail vehicles, The use of carbon fiber materials not only enhances the strength of the car body, providing greater impact resistance and extending the structural lifespan, but also improves the vehicles’ vibration reduction and isolation, resulting in smoother operation, reduced noise, and a more comfortable ride.

The Qingdao Metro Line 1 spans approximately 60 kilometers and has 41 stations. It serves as a major north-south backbone line in Qingdao.

more insights

http://english.qibebt.cas.cn/ne/rp/202504/t20250407_909473.html

https://pubs.acs.org/doi/10.1021/jacs.4c18730

A research team from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has introduced a novel membrane design that mimics biological protein channels to enhance proton transport for efficient energy harvesting. Inspired by the ClC-ec1 antiporter found in Escherichia coli, which facilitates the movement of chloride (Cl⁻) and protons, the researchers developed a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs). This ANF/COF composite forms a robust hydrogen-bonding network and features amide groups that selectively bind to Cl⁻ ions, significantly lowering the energy barrier for proton conduction.

In acidic environments, adding just 0.1% Cl⁻ ions (relative to protons) increased the membrane’s proton permeation rate threefold, reaching 9.8 mol m⁻² h⁻¹ for the efficient migration of H⁺ ions. Under simulated acidic wastewater conditions, the ANF/COF membrane achieved an output power density of 434.8 W m⁻²—one of the highest reported to date for osmotic energy generation. It also showed structural stability over 9,000 minutes (~150 hours) of operation in highly acidic media.

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml

https://www.nature.com/articles/s41467-025-59188-1

A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative membrane that mimics biological ion channels to achieve highly selective lithium ion separation from complex brines. Lithium, which is essential for batteries and clean energy technologies, is often found in low concentrations alongside high levels of sodium, potassium, magnesium, and calcium ions.

Inspired by biological ion channels, the team designed a sulfonic acid-functionalized covalent organic framework (COF)—r-TpPa-SO3H. The membrane’s randomly oriented nanocrystalline structure creates ultra-narrow, winding channels that can differentiate ions based on size and hydration energy. This unique structure enables an unconventional reverse-sieving mechanism that allows the selective passage of Na+, K+, and even divalent ions like Mg2+ and Ca2+ under an electric field while effectively blocking hydrated Li+ ions.

In laboratory tests, the membrane demonstrated remarkable Na+/Li+ and K+/Li+ selectivity, comparable to that of biological ion channels. Its performance remained stable in complex solutions, including real salt-lake brines. Under electrodialysis conditions, the membrane consistently removed major interfering ions, resulting in a lithium-enriched solution ready for downstream processing.

http://en.people.cn/n3/2025/0418/c90000-20304151.html

A 150,000-tonne deep-sea intelligent aquaculture vessel was delivered for use in Qingdao. The ship is 244.9 meters long and houses 15 breeding cabins with a total water holding capacity of nearly 100,000 cubic meters.

The ship-borne smart aquaculture system is expected to have an annual output of 3,600 tonnes of high-quality fish. The breeding cabins can be used to cultivate fish species such as large yellow croaker and salmon.

The new aquaculture vessel is an updated version of its 100,000-tonne predecessor delivered in 2022. Its predecessor has now already traveled over 17,000 nautical miles. The vessel pushed the aquaculture area from nearshore to deep sea, using high-quality seawater resources for breeding.

Back to …