posts archive

https://www.nature.com/articles/s41467-025-63929-7

http://english.cas.cn/newsroom/research_news/life/202510/t20251014_1089412.shtml

The group around Jian XU from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has developed a fully automated “Digital Colony Picker” (DCP). This device identifies and retrieves high-performance microbial clones by simultaneously monitoring their growth and metabolite production—eliminating the need for culture plates, sampling needles, or manual picking.

Designed for the “design-build-test-learn” framework widely adopted in synthetic biology, the DCP streamlines the traditionally slow, labor-intensive “test” phase into a fast, parallel workflow with little hands-on time. It has a microfluidic chip containing 16,000 addressable microchambers that isolate single cells and track their expansion into micro-colonies. An integrated AI engine conducts time-lapse analysis of both brightfield and biosensor signals to quantify growth kinetics and metabolite production in real time. Once target colonies are identified, a laser-induced bubble technique exports them as droplets directly into standard culture plates. This contact-free transfer minimizes cross-contamination and preserves cell viability.

The equipment which was tested for identifying high-yield or lactate-tolerant Zymomonas mobilis mutants is  broadly applicable to adaptive evolution studies, functional gene discovery, and phenotype screening across diverse microbial species.

http://english.cas.cn/newsroom/research_news/life/202510/t20251010_1089023.shtml

https://www.cell.com/plant-communications/pdf/S2590-3462(25)00296-2.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2590346225002962%3Fshowall%3Dtrue

A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences has identified a specific histone modification as the key regulator governing microalgae’s adaptation to low-CO2environments.

The study focused on Nannochloropsis oceanica, tracking its epigenomic dynamics as it transitioned from an environment with 5% CO2 to one with just 0.01% CO2. Using multi-dimensional epigenomic sequencing techniques, the researchers discovered that global DNA methylation in the alga remained stable at 0.13%, effectively ruling out DNA methylation as a major driver of its low-CO2response. By contrast, H3K4me2 methylationwas found to be closely associated with 43.1% of the genes that respond to low-CO2 conditions. These genes include those critical to photosynthesis and ribosome biogenesis, two processes essential for the alga’s survival under carbon-limited stress. Further analysis revealed that H3K4me2 appears to regulate gene transcription by altering chromatin accessibility, a mechanism that aligns with its role as a central regulator of low-CO2 adaptation.

To validate their findings, the team used CRISPR/Cas9 gene-editing technology. They knocked out NO24G02310—a gene that encodes an H3K4 methyltransferase, the enzyme responsible for adding methyl groups to H3K4. The modified algae showed a roughly 22% reduction in growth rate and a 15% decrease in biomass. Additionally, the levels of another histone modification (H3K4me1) dropped, and the genome-wide localization of H3K4me2 shifted—providing direct evidence of H3K4me2’s role in low-CO2 adaptation. Further experiments uncovered that H3K4 modification may act via two pathways: by regulating enzyme networks and by modulating chloroplast transmembrane pH gradients. Both mechanisms work to optimize the alga’s use of available CO2, enhancing its survival under low-carbon conditions.

Nachrichten aus der Chemie (2025) 73, p. 37 – 39 (in English)

Raman article

https://doi.org/10.1016/j.ymben.2023.06.007

https://doi.org/10.1016/j.greenca.2023.08.001

https://www.guanhai.com.cn/p/39 4312.html

Trans-aconitic acid TAA (CAS RN 4023-65-8) is an unsaturated tricarboxylic acid that occurs in various plants. Although it exhibits broad application potential in agriculture, food, biomaterials, and green chemistry, its practical use remains limited. This is primarily because the traditional production processes of plant extraction (from sugar cane)and chemical synthesis (complex and inefficient) cannot achieve large-scale production at a low cost.

Researchers around LU Xuefeng, director of the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) under the Chinese Academy of Sciences, have now established a cell factory for the production of TAA based on a genome-edited industrial strain of Aspergillus terreus. Several rounds of metabolic engineering resulted in strains which produced 57 g/L TAA in shake flask cultures. Scale-up to tank fermentations up to 120 kL – in cooperation with Shandong Lukang Pharmaceutical Co., Ltd.– then led to yields of 88 g/L after 100 hours. A simple recovery procedure combining membrane concentration and crystallization provided TAA crystals with a purity of 98.4%. Given its superior nematicidal properties, QIBEBT and Lukang Pharmaceutical are now in the process of registering TAA as a new nematicide biopesticide.

The QIBEBT team has further found that TAA esters (trans-Aconitates) can be used as plasticizers and could replace the ambiguous phthalates widely used in plastic products. Haier Blood Technology Co., a Qingdao-based company, plans to use TAA esters as plasticizers in its PVC-based blood bags and other products.

TAA ester’s wide temperature stability, from -46°C to 120°C, might also find applications in automotive cable materials as they exhibit excellent resistance to high-temperature volatilization and low-temperature brittle cracking.

In summary, biomanufacturing based on smart cells of A. terreus has provided a new material, TAA and TAA esters, which offer exciting application potentials as a biopesticide and a non-toxic bioplasticizer.

https://spc.jst.go.jp/news/250903/topic_2_03.html

A “China Blue Carbon 2025” Blue Book was released in Qingdao. The Blue Book project was led by the Marine Carbon Neutrality Center of the Ocean University of China, and had invited more than 70 experts and scholars from over 30 institutions in China and abroad to conduct joint special research.

The blue paper predicts that carbon dioxide absorption by China’s blue carbon ecosystems has been on the rise for over the past decade, reaching 500 million tons of carbon dioxide equivalent by 2035, at which point China will play a central role in global blue carbon contributions. By 2025, China’s total mangrove area will be approximately 303 square kilometers, with a total carbon storage of 6.03 million tons; seagrass beds will be approximately 265 square kilometers, with a total carbon storage of 2.3 million tons; and coastal salt marshes will be approximately 2,980 square kilometers, with a total carbon storage of 91.55 million tons.

The paper also notes that carbon absorption by shellfish and algae farming in China’s coastal waters has increased over the past 20 years. At the same time, China’s marine energy has also developed, with its offshore wind power capacity now number one in the world and its marine primary and secondary industries achieving “carbon minus” status.

According to the president of Ocean University of China, the university aims to achieve synergistic effects on the ecosystem, society, and economy by developing seagrass bed restoration technology, to building a blue carbon resource survey and calculation system, and even developing technologies to track and treat the sources of coastal pollutants.

https://en.people.cn/n3/2025/0826/c90000-20357342.html

An ultra zero-carbon building, the headquarters of EV charging pile network operator TELD New Energy, was opened in Qingdao. It is quipped with cutting-edge high-tech solutions to achieve 100 percent green energy substitution.

http://english.cas.cn/newsroom/research_news/life/202508/t20250801_1048868.shtml

https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-025-02677-8

A team at CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has  developed a lipid-rich mutant strain of Saccharomyces cerevisiae for microbial production of palmitoleic acid— a rare omega-7 fatty acid with proven anti-inflammatory and metabolic benefits.

The team used a combined mutagenesis approach—employing zeocin, an antibiotic-based mutagen, and Atmospheric and Room Temperature Plasma (ARTP)—to create a diverse library of yeast mutants. They then deployed FlowRACS, a Raman flow cytometry system, to select live yeast cells with elevated lipid levels by analyzing their intrinsic single-cell Raman spectra, eliminating the need for chemical stains or genetic reporters.

This method identified the mutant strain MU2R48, which achieved a lipid content of 40.26%—a 30.85% increase over its parental strain SC018—while maintaining similar biomass production.

Photo: Raman flow cytometry efficiently identifies lipid-rich Saccharomyces cerevisiae  mutants from a Zeocin–ARTP-induced library. (Image by QIBEBT)

Registration is open: https://conf.sciencemate.com/ICGC2025

ICGC aims to provide an interdisciplinary academic exchange platform and academic community for scientific and technological innovation in the area of CO2 emission reduction and sustainable development. The conference will focus on carbon resources, carbon conversion technologies, carbon life cycle management, and breakthrough developments in green carbon science.

Qingdao Institute of Bioenergy and Bioprocess Technology, CAS/Shandong Energy Institute (QIBEBT/SEI) is a research institute that is active in science and technology developments of bioenergy, fossil energy, hydrogen energy, energy storage devices, and energy informatics, see http://english.qibebt.cas.cn

https://j.people.com.cn/n3/2025/0627/c95952-20333735.html

The tugboat was designed and built by Shandong Port Qingdao Port Group Co., Ltd. and is equipped with a hybrid system of “hydrogen fuel cells + liquid-cooled lithium batteries” to achieve zero carbon dioxide emissions. It can sail for more than 12 hours at a speed of 9 knots and has a towing force of 82 tons. With technologies such as fully automatic smart on-shore charging, it has become the country’s largest port tugboat in terms of horsepower and lithium battery capacity.

An automated digital colony picker monitors growth and metabolite production, eliminating the need for culturing cells

https://www.nature.com/articles/s41467-025-63929-7 http://english.cas.cn/newsroom/research_news/life/202510/t20251014_1089412.shtml The group around Jian XU from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has developed a fully automated “Digital Colony Picker” (DCP). This device identifies and retrieves high-performance

Read more >

Epigenetic modifications help algae to adapt to low CO2 environments

http://english.cas.cn/newsroom/research_news/life/202510/t20251010_1089023.shtml https://www.cell.com/plant-communications/pdf/S2590-3462(25)00296-2.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2590346225002962%3Fshowall%3Dtrue A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences has identified a specific histone modification as the key regulator governing microalgae’s adaptation to

Read more >

A lipid-rich baker’s yeast mutant provides high yields of palmitoleic acid

http://english.cas.cn/newsroom/research_news/life/202508/t20250801_1048868.shtml https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-025-02677-8 A team at CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has  developed a lipid-rich mutant strain of Saccharomyces cerevisiae for microbial production of palmitoleic acid— a rare omega-7 fatty acid

Read more >

A hydrogen-powered tugboat in Qingdao port

https://j.people.com.cn/n3/2025/0627/c95952-20333735.html The tugboat was designed and built by Shandong Port Qingdao Port Group Co., Ltd. and is equipped with a hybrid system of “hydrogen fuel cells + liquid-cooled lithium batteries” to achieve zero

Read more >

A biomimetic membrane allows lithium ion separation by electrodialysis

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml https://www.nature.com/articles/s41467-025-59188-1 A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative

Read more >

QIBEBT-led consortium achieves bacterial degradation of PET bottles to provide terephtalic acid in 97% yield

http://english.qibebt.cas.cn/ne/rp/202502/t20250218_902019.html https://www.sciencedirect.com/science/article/abs/pii/S030438942500353X?via%3Dihub https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.13580 A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences, in collaboration with Nanjing Tech University and Greifswald University, has introduced an

Read more >

A deep-sea salmon farming facility near Qingdao

https://jp.news.cn/20250116/9dc88fa0753f468da2fc4772c53548ec/c.html?page=1 In a large-scale deep sea smart fishery farming facility “Deep Blue 2” in the Qingdao National Deep Sea and Ocean Green Aquaculture Test Area, approximately 400,000 salmon are farmed in farming cages,

Read more >

A combination of FISH and Raman sequencing allows for enzyme detection in environmental samples

http://english.cas.cn/newsroom/research_news/life/202501/t20250110_898273.shtml https://doi.org/10.1016/j.xinn.2024.100759 A new technology termed FISH-scRACS-seq (Fluorescence In Situ Hybridization-guided Single-Cell Raman-activated Sorting and Sequencing) combines species-targeting fluorescence in situ hybridization (FISH) with Raman spectroscopy, allowing for the direct identification and isolation—from environmental samples—of

Read more >

Research Centers and universities in Qingdao (incomplete list)

R&D institutions CAS Institute of Oceanology http://english.qdio.cas.cn/Internation/gjwyh/ CAS Center for Ocean Megascience http://www.coms.ac.cn/home/ CAS Qingdao Institute of Bioenergy and Environmental Technology QIBEBT http://www.qibebt.cas.cn Shandong Energy Institute https://english.cas.cn/Special_Reports/Dual_Carbon_CAS_in_Action/Org/202204/t20220402_303477.shtml Shandong University National Research Center for

Read more >
BACK TO