Professor Juergen Popp, University of Jena, gives talk at QIBEBT on “Translational Biophotonics”

http://english.qibebt.cas.cn/ne/ns/202310/t20231027_397294.html

On Oct. 27, 2024, Prof. Juergen Popp Speaks, director of the Leibniz Institute of Photonic Technology and chair for Physical Chemistry at Friedrich-Schiller University, gave a talk at QIBEBT Distinguished Expert Forum and Visits Single-Cell Center on “Translational Biophotonics – Raman spectroscopy and AI a game changer !?” Popp elucidated the innovative technologies and potential applications of Raman spectroscopy in biophotonics, particularly its extensive use in clinical diagnostics. He emphasized the potential of multimodal methods combining Raman spectroscopy with other spectroscopic/optical technologies and how Raman can address today’s medical challenges, such as early cancer diagnosis and personalized treatments.

The visit was part of the Sino-German Scientific Partnership Program funded by the National Natural Science Foundation of China.

more insights

http://english.qibebt.cas.cn/ne/rp/202504/t20250407_909473.html

https://pubs.acs.org/doi/10.1021/jacs.4c18730

A research team from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has introduced a novel membrane design that mimics biological protein channels to enhance proton transport for efficient energy harvesting. Inspired by the ClC-ec1 antiporter found in Escherichia coli, which facilitates the movement of chloride (Cl⁻) and protons, the researchers developed a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs). This ANF/COF composite forms a robust hydrogen-bonding network and features amide groups that selectively bind to Cl⁻ ions, significantly lowering the energy barrier for proton conduction.

In acidic environments, adding just 0.1% Cl⁻ ions (relative to protons) increased the membrane’s proton permeation rate threefold, reaching 9.8 mol m⁻² h⁻¹ for the efficient migration of H⁺ ions. Under simulated acidic wastewater conditions, the ANF/COF membrane achieved an output power density of 434.8 W m⁻²—one of the highest reported to date for osmotic energy generation. It also showed structural stability over 9,000 minutes (~150 hours) of operation in highly acidic media.

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml

https://www.nature.com/articles/s41467-025-59188-1

A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative membrane that mimics biological ion channels to achieve highly selective lithium ion separation from complex brines. Lithium, which is essential for batteries and clean energy technologies, is often found in low concentrations alongside high levels of sodium, potassium, magnesium, and calcium ions.

Inspired by biological ion channels, the team designed a sulfonic acid-functionalized covalent organic framework (COF)—r-TpPa-SO3H. The membrane’s randomly oriented nanocrystalline structure creates ultra-narrow, winding channels that can differentiate ions based on size and hydration energy. This unique structure enables an unconventional reverse-sieving mechanism that allows the selective passage of Na+, K+, and even divalent ions like Mg2+ and Ca2+ under an electric field while effectively blocking hydrated Li+ ions.

In laboratory tests, the membrane demonstrated remarkable Na+/Li+ and K+/Li+ selectivity, comparable to that of biological ion channels. Its performance remained stable in complex solutions, including real salt-lake brines. Under electrodialysis conditions, the membrane consistently removed major interfering ions, resulting in a lithium-enriched solution ready for downstream processing.

http://en.people.cn/n3/2025/0418/c90000-20304151.html

A 150,000-tonne deep-sea intelligent aquaculture vessel was delivered for use in Qingdao. The ship is 244.9 meters long and houses 15 breeding cabins with a total water holding capacity of nearly 100,000 cubic meters.

The ship-borne smart aquaculture system is expected to have an annual output of 3,600 tonnes of high-quality fish. The breeding cabins can be used to cultivate fish species such as large yellow croaker and salmon.

The new aquaculture vessel is an updated version of its 100,000-tonne predecessor delivered in 2022. Its predecessor has now already traveled over 17,000 nautical miles. The vessel pushed the aquaculture area from nearshore to deep sea, using high-quality seawater resources for breeding.

Back to …