A biomimetic membrane allows lithium ion separation by electrodialysis

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml

https://www.nature.com/articles/s41467-025-59188-1

A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative membrane that mimics biological ion channels to achieve highly selective lithium ion separation from complex brines. Lithium, which is essential for batteries and clean energy technologies, is often found in low concentrations alongside high levels of sodium, potassium, magnesium, and calcium ions.

Inspired by biological ion channels, the team designed a sulfonic acid-functionalized covalent organic framework (COF)—r-TpPa-SO3H. The membrane’s randomly oriented nanocrystalline structure creates ultra-narrow, winding channels that can differentiate ions based on size and hydration energy. This unique structure enables an unconventional reverse-sieving mechanism that allows the selective passage of Na+, K+, and even divalent ions like Mg2+ and Ca2+ under an electric field while effectively blocking hydrated Li+ ions.

In laboratory tests, the membrane demonstrated remarkable Na+/Li+ and K+/Li+ selectivity, comparable to that of biological ion channels. Its performance remained stable in complex solutions, including real salt-lake brines. Under electrodialysis conditions, the membrane consistently removed major interfering ions, resulting in a lithium-enriched solution ready for downstream processing.

more insights

http://english.cas.cn/newsroom/research_news/life/202508/t20250801_1048868.shtml

https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-025-02677-8

A team at CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has  developed a lipid-rich mutant strain of Saccharomyces cerevisiae for microbial production of palmitoleic acid— a rare omega-7 fatty acid with proven anti-inflammatory and metabolic benefits.

The team used a combined mutagenesis approach—employing zeocin, an antibiotic-based mutagen, and Atmospheric and Room Temperature Plasma (ARTP)—to create a diverse library of yeast mutants. They then deployed FlowRACS, a Raman flow cytometry system, to select live yeast cells with elevated lipid levels by analyzing their intrinsic single-cell Raman spectra, eliminating the need for chemical stains or genetic reporters.

This method identified the mutant strain MU2R48, which achieved a lipid content of 40.26%—a 30.85% increase over its parental strain SC018—while maintaining similar biomass production.

Photo: Raman flow cytometry efficiently identifies lipid-rich Saccharomyces cerevisiae  mutants from a Zeocin–ARTP-induced library. (Image by QIBEBT)

Registration is open: https://conf.sciencemate.com/ICGC2025

ICGC aims to provide an interdisciplinary academic exchange platform and academic community for scientific and technological innovation in the area of CO2 emission reduction and sustainable development. The conference will focus on carbon resources, carbon conversion technologies, carbon life cycle management, and breakthrough developments in green carbon science.

Qingdao Institute of Bioenergy and Bioprocess Technology, CAS/Shandong Energy Institute (QIBEBT/SEI) is a research institute that is active in science and technology developments of bioenergy, fossil energy, hydrogen energy, energy storage devices, and energy informatics, see http://english.qibebt.cas.cn

https://j.people.com.cn/n3/2025/0627/c95952-20333735.html

The tugboat was designed and built by Shandong Port Qingdao Port Group Co., Ltd. and is equipped with a hybrid system of “hydrogen fuel cells + liquid-cooled lithium batteries” to achieve zero carbon dioxide emissions. It can sail for more than 12 hours at a speed of 9 knots and has a towing force of 82 tons. With technologies such as fully automatic smart on-shore charging, it has become the country’s largest port tugboat in terms of horsepower and lithium battery capacity.

Back to …