1 year birthday party of “Green Carbon” with a 2024 National Green Carbon Science Conference

http://qibebt.cas.cn/news/zyxw/202410/t20241017_7402455.html

From October 17 – 19, the first birthday of the journal was celebrated with a conference to which over 100 scientists attended.

Signing ceremony of the Qingdao Synthetic Biology Technology Innovation Strategic Alliance

T the conference theme was “Innovation of green and low-carbon technology, empowering carbon peak and carbon neutrality”, focusing on carbon resources, low-carbon conversion technology, multi-energy integration and utilization and other fields for in-depth discussions. The conference invited more than 100 experts, scholars, and business people to attend the conference.

As the chairman of this conference, QIBEBT director and Green Carbon editor-in-chief Lv Xuefeng said that this conference aims to build a high-level exchange platform for scientific research in the field of green and low-carbon research across the country. Breakthroughs will be sought in perovskite photovoltaics, solid-state lithium batteries, biosynthesis of energetic materials, green bio-jet fuel, new generation of bio-based green plasticizers, and iron-branched butyl-pentane rubber. In order to further expand China’s academic influence in the field of green and low-carbon science and technology, the international academic journal Green Carbon aims to promote scientific and technological innovation in the field of sustainable development and provide a high-quality and open academic exchange platform for global researchers in the field of green and low-carbon.

At the meeting, the “Qingdao Synthetic Biology Technology Innovation Strategic Alliance” jointly established by the Qingdao Institute of Energy and relevant enterprises, universities and research institutes was formally established. Qingdao Wanyuan Environmental Technology Co., Ltd., Shandong Jinzhirui New Materials Development Co., Ltd., Shandong Environmental Protection Development Group Co., Ltd., Qingdao Zhongchuanghuike Biotechnology Co., Ltd., Qingdao Zhongke Green Carbon Technology Co., Ltd., Shandong Hengxin Group Co., Ltd., Qingdao Zhongke Yuanben New Energy Co., Ltd., and China Hydrogen Energy Company (Energy Cube (Qingdao) Data Technology Co., Ltd.) signed contracts with the Institute respectively.

The conference also held a special event for the first anniversary of the publication of the international journal Green Carbon. Jiang Lei and Lv Xuefeng presented the “Excellent Editorial Board Award” to Rolf Schmid, Tang Yong, Chen Xuesi and Lv Xuefeng presented the “Excellent Young Editorial Board Award” to 24 young editors, and Rolf Schmid and Lv Xuefeng jointly unveiled the Green Carbon Overseas (Germany) Office.

 

more insights

http://english.qibebt.cas.cn/ne/rp/202502/t20250218_902019.html

https://www.sciencedirect.com/science/article/abs/pii/S030438942500353X?via%3Dihub

https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.13580

A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences, in collaboration with Nanjing Tech University and Greifswald University, has introduced an innovative solution for the depolymerization of polyethylene terephthalate (PET). This solution utilizes an engineered whole-cell biocatalyst based on the thermophilic bacterium Clostridium thermocellum.

This study builds on prior work, where the research team first demonstrated the concept of whole-cell catalytic PET depolymerization. In that study, the genetically engineered C. thermocellum expressed leaf compost cutinase (LCC) via a plasmid for high-temperature PET depolymerization.

In this study, the researchers integrated LCC directly into the chromosome of C. thermocellum, ensuring stable enzyme expression. They further enhanced the system by introducing LCC variants and co-expressing hydrophobic modules.

By optimizing reaction conditions and controlling pH, the researchers achieved a significant improvement in PET depolymerization efficiency with minimal accumulation of the intermediate product mono(2-hydroxyethyl) terephthalate (MHET).

When tested with pretreated PET bottle particles, about 97% of the added PET was converted into terephthalic acid (TPA), a key monomer used in producing new plastics or high-value chemicals. This high level of performance positions the system as a promising green solution for PET recycling.

Additionally, C. thermocellum is naturally capable of degrading cellulose, making it a potential candidate for directly processing mixed textile waste that contains cotton fibers and PET.

http://j.people.com.cn/n3/2025/0207/c517455-20273369.html

https://www.recordchina.co.jp/b948125-s6-c20-d0189.html

During the Chinese New Year holiday, a mountain climbing support robot jointly developed by Taishan Wenlun Group and Shenzhen Kenqi Technology Co. was test-introduced in the Taishan Scenic Area. Guangming reported.

According to Taishan Wenlun Group, the mountain climbing support robot can be used in a wide range of areas in daily life and work, such as mountain climbing, fitness, running, walking, and climbing up and down stairs. It weighs just 1.8 kilograms and is ergonomically designed with power, electronics and artificial intelligence (AI) algorithms. It can sense every movement of the lower limbs and provide support at the right time.

According to the group, it can operate continuously for more than five hours.  The product is currently in the trial operation phase, and the company plans to launch 200 units on the market in early March.

https://jp.news.cn/20250116/9dc88fa0753f468da2fc4772c53548ec/c.html?page=1

In a large-scale deep sea smart fishery farming facility “Deep Blue 2” in the Qingdao National Deep Sea and Ocean Green Aquaculture Test Area, approximately 400,000 salmon are farmed in farming cages, with a high survival rate and healthy growth.

According to Gu Qihuan, production manager at Shandong Caijing Wanzefeng Marine Technology Co., Ltd., salmon farming requires strict environmental conditions, and it is very difficult to find suitable sea areas for large-scale farming. However, this location is home to 130,000 square kilometers of Yellow Sea cold water mass, and the water temperature in summer is 10 to 16 degrees Celsius, which is very suitable for salmon growth. Deep Blue 2 sinks to the level of the cold water mass less than 30 meters in summer and rises to the surface again in winter.

Deep Blue 2 is 71.5 meters high, 70 meters in diameter, and has a fully submerged farming area of ​​90,000 cubic meters. It is equipped with multiple smart farming equipment such as an automatic feeding system and an underwater photography system, making unmanned farming in the deep sea and distant ocean possible.

For harvest, schools of salmon are sucked up one after another onto work boats, passed through a fish-water separator, and transported to a workshop for processing. Workers place the salmon in insulated boxes filled with ice and transport them to land overnight for processing and sale.

The freshly caught salmon weigh an average of 3-4 kilograms each, and each harvest is about 5,000 fish. At the earliest, they can be delivered to major cities in China in just over 30 hours.

Back to …