Nature 2025 science city ranking: six of top 10 in China, Qingdao is 31 between Munich and Berlin

https://www.nature.com/nature-index/supplements/nature-index-2025-science-cities/tables/overall

https://en.people.cn/n3/2025/1118/c90000-20391615.html

The newly released “Nature Index 2025 Science Cities” supplement shows that the number of Chinese cities in the global top ten rose from five in 2023 to six in 2024, marking the first time China holds a majority in the rankings.

The supplement draws on the Nature Index database, which tracks research articles published from 2015 to 2024. Its analysis uses “Share”, a fractional count reflecting institutional contribution to publications, as the primary metric, with time-series data adjusted to 2024 levels. Each city’s Share is calculated by summing the contributions of all affiliated institutions located within that city.

According to the Nature Index, the world’s leading science cities overall are: Beijing, Shanghai, New York metropolitan area (U.S.), Boston metropolitan area (U.S.), Nanjing (China), Guangzhou (China), San Francisco Bay Area (U.S.), Wuhan (China), Baltimore-Washington metropolitan area (U.S.), and Hangzhou (China).

Further analysis shows that Chinese cities hold a strong advantage in chemistry, physical sciences, and earth and environmental sciences, leading the global rankings in all three fields. Notably, Chinese cities claimed all of the top ten positions in chemistry for the first time. In the other two subject areas, they secured six of the top ten spots, with Beijing ranking first worldwide across all three domains.

European cities in the ranking start at 19 (London), followed by Zurich (28), Cambridge (29), Munich (30) and Berlin (32), following Qingdao at position 31.

more insights

https://www.sciencedirect.com/journal/green-carbon

The journal, founded only in 2023, has been formally accepted for indexing in the Emerging Sources Citation Index (ESCI), part of the Web of Science Core Collection by Clarivate. This achievement marks important recognition of the journal’s growing quality, editorial standards, and international relevance. ESCI inclusion will significantly enhance the journal’s visibility and provide authors with a broader platform for the dissemination of their research.

https://j.people.com.cn/n3/2026/0203/c95952-20422094.html

A professor at Qingdao University in Shandong Province has developed a groundbreaking system that generates electricity when people blink, supplying power to glasses that allow patients with amyotrophic lateral sclerosis (ALS) to control their wheelchairs simply by moving their eyes.

With conventional eye tracking devices, patients who wanted to operate a wheelchair and move around had to wear a heavy device on their head and be connected to a long electrical cord. Furthermore, alarms of low battery levels did discouraging patients from moving around on their own.

The eye tracking system of the team generates and supplies electricity by attaching dimethylpolysiloxane (PDMS)  to the surface of the user’s eyeball like a contact lens, creating a “micro-friction generator.” When the user blinks or moves their eyeball, friction occurs between the eyeball and PDMS, continuously generating electricity.

In an eyeglass frame worn by the user, transparent electrodes made of indium tin oxide are embedded, acting as a transducer. The transparent electrodes precisely track the distribution and changes of electric charge through electrostatic induction and convert it into a recognizable electrical signal in real time. This signal is then transmitted to an external device via a control circuit, ultimately enabling highly precise control.

Before this technology can leave the lab and be widely applied, however, a series of hurdles must be overcome for industrialization.

An illustration of controlling a wheelchair through blinking and eye movements (photo courtesy of interviewee).

https://doi.org/10.1016/j.biortech.2025.133788

http://english.cas.cn/newsroom/research_news/life/202601/t20260114_1145714.shtml

Breweries typically monitor fermentation by analyzing broth composition. Alcohols, esters, acids and residual sugars are quantified via chromatography-based assays. While reliable, these tests are time-consuming and only yield batch-average results.

A research led by scientists from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has simplified this process and developed a novel workflow dubbed “process ramanomics,” which is based on spontaneous single-cell Raman spectroscopy.

To validate the approach, the researchers tracked an industrial beer fermentation process using the lager yeast Saccharomyces pastorianus, sampling a single production batch over an eight-day period. At each stage of fermentation, they collected high-throughput Raman spectra from individual cells (a “ramanome”) and matched these unique molecular fingerprints to conventional lab measurements of 43 extracellular phenotypes in the fermentation medium.

Using multivariate regression analysis, the team found that ramanomes could accurately predict 19 extracellular phenotypes. This included four higher alcohols, four esters, four amino acids, two organic acids, four mono- and disaccharide substrates, and the alcohol-to-ester ratio—a commonly used indicator tied to beer flavor balance. In practical terms, a single, rapid cellular analysis can now replace multiple time-intensive chemical assays—without sacrificing single-cell resolution details.

Because the models output cell-level predictions, the researchers also tracked phenotypic heterogeneity over time. Different metabolite classes displayed distinct heterogeneity trajectories, and for several phenotypes higher heterogeneity tended to accompany lower metabolite levels—suggesting that dispersion among cells may be a useful process-state indicator.

Back to …