QIBEBT wins first prize of 2023 Qingdao Technology Invention Award

http://qibebt.cas.cn/news/zyxw/202408/t20240815_7273375.html

The prize was provided on August 16 at the Qingdao Science and Technology Innovation Conference.

QIBEBT has focused for many years on the problem of high-performance tire treads which presently rely on imports of solution-polymerized styrene-butadiene rubber.

Wang Qinggang, director of the Catalytic Polymerization and Engineering Research Center of QIBEBT, and his project team have created a new material of iron-based combed styrene-butadiene rubber and invented technologies of green, environmentally friendly, controllable and stable industrial production. The Qingdao Institute of Energy has achieved the first 10,000-ton industrial demonstration of iron-based combed styrene-butadiene rubber in the world, and has completed the manufacturing demonstration and sales of more than 500,000 high-performance tires, achieving the highest level A in the EU new labeling law.

more insights

http://english.cas.cn/newsroom/research_news/life/202508/t20250801_1048868.shtml

https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-025-02677-8

A team at CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has  developed a lipid-rich mutant strain of Saccharomyces cerevisiae for microbial production of palmitoleic acid— a rare omega-7 fatty acid with proven anti-inflammatory and metabolic benefits.

The team used a combined mutagenesis approach—employing zeocin, an antibiotic-based mutagen, and Atmospheric and Room Temperature Plasma (ARTP)—to create a diverse library of yeast mutants. They then deployed FlowRACS, a Raman flow cytometry system, to select live yeast cells with elevated lipid levels by analyzing their intrinsic single-cell Raman spectra, eliminating the need for chemical stains or genetic reporters.

This method identified the mutant strain MU2R48, which achieved a lipid content of 40.26%—a 30.85% increase over its parental strain SC018—while maintaining similar biomass production.

Photo: Raman flow cytometry efficiently identifies lipid-rich Saccharomyces cerevisiae  mutants from a Zeocin–ARTP-induced library. (Image by QIBEBT)

Registration is open: https://conf.sciencemate.com/ICGC2025

ICGC aims to provide an interdisciplinary academic exchange platform and academic community for scientific and technological innovation in the area of CO2 emission reduction and sustainable development. The conference will focus on carbon resources, carbon conversion technologies, carbon life cycle management, and breakthrough developments in green carbon science.

Qingdao Institute of Bioenergy and Bioprocess Technology, CAS/Shandong Energy Institute (QIBEBT/SEI) is a research institute that is active in science and technology developments of bioenergy, fossil energy, hydrogen energy, energy storage devices, and energy informatics, see http://english.qibebt.cas.cn

https://j.people.com.cn/n3/2025/0627/c95952-20333735.html

The tugboat was designed and built by Shandong Port Qingdao Port Group Co., Ltd. and is equipped with a hybrid system of “hydrogen fuel cells + liquid-cooled lithium batteries” to achieve zero carbon dioxide emissions. It can sail for more than 12 hours at a speed of 9 knots and has a towing force of 82 tons. With technologies such as fully automatic smart on-shore charging, it has become the country’s largest port tugboat in terms of horsepower and lithium battery capacity.

Back to …