A deep-sea salmon farming facility near Qingdao

https://jp.news.cn/20250116/9dc88fa0753f468da2fc4772c53548ec/c.html?page=1

In a large-scale deep sea smart fishery farming facility “Deep Blue 2” in the Qingdao National Deep Sea and Ocean Green Aquaculture Test Area, approximately 400,000 salmon are farmed in farming cages, with a high survival rate and healthy growth.

According to Gu Qihuan, production manager at Shandong Caijing Wanzefeng Marine Technology Co., Ltd., salmon farming requires strict environmental conditions, and it is very difficult to find suitable sea areas for large-scale farming. However, this location is home to 130,000 square kilometers of Yellow Sea cold water mass, and the water temperature in summer is 10 to 16 degrees Celsius, which is very suitable for salmon growth. Deep Blue 2 sinks to the level of the cold water mass less than 30 meters in summer and rises to the surface again in winter.

Deep Blue 2 is 71.5 meters high, 70 meters in diameter, and has a fully submerged farming area of ​​90,000 cubic meters. It is equipped with multiple smart farming equipment such as an automatic feeding system and an underwater photography system, making unmanned farming in the deep sea and distant ocean possible.

For harvest, schools of salmon are sucked up one after another onto work boats, passed through a fish-water separator, and transported to a workshop for processing. Workers place the salmon in insulated boxes filled with ice and transport them to land overnight for processing and sale.

The freshly caught salmon weigh an average of 3-4 kilograms each, and each harvest is about 5,000 fish. At the earliest, they can be delivered to major cities in China in just over 30 hours.

more insights

http://english.qibebt.cas.cn/ne/rp/202512/t20251201_1134324.html

UNESCO’s “Decade of Sciences” aims to engage science in achieving its sustainable development goals (SDGs).

UNESCO  has just endorsed the long-standing commitment of the Qingdao Institute of Bioenergy and Bioprocess Technology QIBEBT to providing open science solutions for green and sustainable technologies.

QIBEBT’s “Green Carbon Programme” focuses on four core themes,

  • development and utilization of green carbon resources,
  • green conversion and utilization of fossil carbon resources,
  • efficient fixation and utilization of carbon emissions, and
  • analysis and management of multi-scale carbon cycles.

In addition, QIBEBT operates the editorial office of the Green Carbon journal https://www.sciencedirect.com/journal/green-carbon which offers an in-depth and multidisciplinary view of research advances in the field.

With the leverage of the UNESCO endorsement, QIBEBT will boost its efforts to drive innovation and improve public science literacy, supporting high-quality, sustainable, and low-carbon development in China and worldwide for achieving the SDGs.

https://www.sciencedirect.com/science/article/pii/S2950155525000667?via%3Dihub

https://www.cas.cn/syky/202511/t20251125_5089765.shtml

A research team at the CAS Tianjin Institute of Industrial Biotechnology has proposed a novel artificial carbon fixation pathway—LATCH which comprises 10 completely known enzymatic steps. Each cycle converts two molecules of HCO₃⁻ into one molecule of acetyl-CoA, requiring only adenosine triphosphate (ATP) and reduced coenzyme II for energy. Kinetic and thermodynamic modeling analysis shows that it is a linear autocatalytic cycle structure without kinetic traps or thermodynamic barriers, possessing high feasibility and potential for continued development. It can provide insights for improving the efficiency of systems such as photosynthetic microorganisms, plants, and engineered cell factories.

Regarding the selection of parental modules, the research team referenced research on the serine cycle and designed a modified version of the serine cycle, simplifying the pathway structure and bypassing the inefficient steps involving hydroxypyruvate, thus enabling the pathway to function effectively in the heterologous host *E. coli*. Simultaneously, the team replaced the amino acid deamination and transamination steps in the serine cycle with a decarboxylation process, forming an MCG cycle free from formic acid dependence. This cycle can further convert glycerate 3-phosphate produced by processes such as the Calvin cycle and glycolysis into acetyl-CoA in a negative carbon mode. The study also referenced a series of photorespiration bypass concepts developed for recovering the Rubisco byproduct glycolate-2-phosphate, among which the TaCo module, due to its artificial carboxylation reaction, theoretically has a maximum yield of 150%. This study found that by introducing glyoxylate reductase as a key step to act as a “molecular latch,” the natural serine cycle and the artificially carboxylated module TaCo can be recombined, resulting in a functional transformation—from two parent modules dependent on organic substrates to a complete carbon-fixing cycle.

Based on the LATCH cycle formed by module integration, kinetic analysis shows that this pathway is a linear autocatalytic cycle, theoretically avoiding kinetic traps while eliminating the need to establish complex regulatory relationships. Meanwhile, eight steps in the pathway receive thermodynamic support from adenosine triphosphate (ATP), reducing power, or high-energy substrates, and the remaining two lyase-catalyzed processes do not pose thermodynamic bottlenecks. These inherent advantages at the stoichiometric, kinetic, and thermodynamic levels lay the foundation for the continued development and application of LATCH.

https://www.nature.com/nature-index/supplements/nature-index-2025-science-cities/tables/overall

https://en.people.cn/n3/2025/1118/c90000-20391615.html

The newly released “Nature Index 2025 Science Cities” supplement shows that the number of Chinese cities in the global top ten rose from five in 2023 to six in 2024, marking the first time China holds a majority in the rankings.

The supplement draws on the Nature Index database, which tracks research articles published from 2015 to 2024. Its analysis uses “Share”, a fractional count reflecting institutional contribution to publications, as the primary metric, with time-series data adjusted to 2024 levels. Each city’s Share is calculated by summing the contributions of all affiliated institutions located within that city.

According to the Nature Index, the world’s leading science cities overall are: Beijing, Shanghai, New York metropolitan area (U.S.), Boston metropolitan area (U.S.), Nanjing (China), Guangzhou (China), San Francisco Bay Area (U.S.), Wuhan (China), Baltimore-Washington metropolitan area (U.S.), and Hangzhou (China).

Further analysis shows that Chinese cities hold a strong advantage in chemistry, physical sciences, and earth and environmental sciences, leading the global rankings in all three fields. Notably, Chinese cities claimed all of the top ten positions in chemistry for the first time. In the other two subject areas, they secured six of the top ten spots, with Beijing ranking first worldwide across all three domains.

European cities in the ranking start at 19 (London), followed by Zurich (28), Cambridge (29), Munich (30) and Berlin (32), following Qingdao at position 31.

Back to …