A deep-sea salmon farming facility near Qingdao

https://jp.news.cn/20250116/9dc88fa0753f468da2fc4772c53548ec/c.html?page=1

In a large-scale deep sea smart fishery farming facility “Deep Blue 2” in the Qingdao National Deep Sea and Ocean Green Aquaculture Test Area, approximately 400,000 salmon are farmed in farming cages, with a high survival rate and healthy growth.

According to Gu Qihuan, production manager at Shandong Caijing Wanzefeng Marine Technology Co., Ltd., salmon farming requires strict environmental conditions, and it is very difficult to find suitable sea areas for large-scale farming. However, this location is home to 130,000 square kilometers of Yellow Sea cold water mass, and the water temperature in summer is 10 to 16 degrees Celsius, which is very suitable for salmon growth. Deep Blue 2 sinks to the level of the cold water mass less than 30 meters in summer and rises to the surface again in winter.

Deep Blue 2 is 71.5 meters high, 70 meters in diameter, and has a fully submerged farming area of ​​90,000 cubic meters. It is equipped with multiple smart farming equipment such as an automatic feeding system and an underwater photography system, making unmanned farming in the deep sea and distant ocean possible.

For harvest, schools of salmon are sucked up one after another onto work boats, passed through a fish-water separator, and transported to a workshop for processing. Workers place the salmon in insulated boxes filled with ice and transport them to land overnight for processing and sale.

The freshly caught salmon weigh an average of 3-4 kilograms each, and each harvest is about 5,000 fish. At the earliest, they can be delivered to major cities in China in just over 30 hours.

more insights

Nachrichten aus der Chemie (2025) 73, p. 37 – 39 (in English)

Raman article

https://doi.org/10.1016/j.ymben.2023.06.007

https://doi.org/10.1016/j.greenca.2023.08.001

https://www.guanhai.com.cn/p/39 4312.html

Trans-aconitic acid TAA (CAS RN 4023-65-8) is an unsaturated tricarboxylic acid that occurs in various plants. Although it exhibits broad application potential in agriculture, food, biomaterials, and green chemistry, its practical use remains limited. This is primarily because the traditional production processes of plant extraction (from sugar cane)and chemical synthesis (complex and inefficient) cannot achieve large-scale production at a low cost.

Researchers around LU Xuefeng, director of the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) under the Chinese Academy of Sciences, have now established a cell factory for the production of TAA based on a genome-edited industrial strain of Aspergillus terreus. Several rounds of metabolic engineering resulted in strains which produced 57 g/L TAA in shake flask cultures. Scale-up to tank fermentations up to 120 kL – in cooperation with Shandong Lukang Pharmaceutical Co., Ltd.– then led to yields of 88 g/L after 100 hours. A simple recovery procedure combining membrane concentration and crystallization provided TAA crystals with a purity of 98.4%. Given its superior nematicidal properties, QIBEBT and Lukang Pharmaceutical are now in the process of registering TAA as a new nematicide biopesticide.

The QIBEBT team has further found that TAA esters (trans-Aconitates) can be used as plasticizers and could replace the ambiguous phthalates widely used in plastic products. Haier Blood Technology Co., a Qingdao-based company, plans to use TAA esters as plasticizers in its PVC-based blood bags and other products.

TAA ester’s wide temperature stability, from -46°C to 120°C, might also find applications in automotive cable materials as they exhibit excellent resistance to high-temperature volatilization and low-temperature brittle cracking.

In summary, biomanufacturing based on smart cells of A. terreus has provided a new material, TAA and TAA esters, which offer exciting application potentials as a biopesticide and a non-toxic bioplasticizer.

https://spc.jst.go.jp/news/250903/topic_2_03.html

A “China Blue Carbon 2025” Blue Book was released in Qingdao. The Blue Book project was led by the Marine Carbon Neutrality Center of the Ocean University of China, and had invited more than 70 experts and scholars from over 30 institutions in China and abroad to conduct joint special research.

The blue paper predicts that carbon dioxide absorption by China’s blue carbon ecosystems has been on the rise for over the past decade, reaching 500 million tons of carbon dioxide equivalent by 2035, at which point China will play a central role in global blue carbon contributions. By 2025, China’s total mangrove area will be approximately 303 square kilometers, with a total carbon storage of 6.03 million tons; seagrass beds will be approximately 265 square kilometers, with a total carbon storage of 2.3 million tons; and coastal salt marshes will be approximately 2,980 square kilometers, with a total carbon storage of 91.55 million tons.

The paper also notes that carbon absorption by shellfish and algae farming in China’s coastal waters has increased over the past 20 years. At the same time, China’s marine energy has also developed, with its offshore wind power capacity now number one in the world and its marine primary and secondary industries achieving “carbon minus” status.

According to the president of Ocean University of China, the university aims to achieve synergistic effects on the ecosystem, society, and economy by developing seagrass bed restoration technology, to building a blue carbon resource survey and calculation system, and even developing technologies to track and treat the sources of coastal pollutants.

Back to …