An exosceleton for mounting climbing tested at Taishan mountain, Qingdao

http://j.people.com.cn/n3/2025/0207/c517455-20273369.html

https://www.recordchina.co.jp/b948125-s6-c20-d0189.html

During the Chinese New Year holiday, a mountain climbing support robot jointly developed by Taishan Wenlun Group and Shenzhen Kenqi Technology Co. was test-introduced in the Taishan Scenic Area. Guangming reported.

According to Taishan Wenlun Group, the mountain climbing support robot can be used in a wide range of areas in daily life and work, such as mountain climbing, fitness, running, walking, and climbing up and down stairs. It weighs just 1.8 kilograms and is ergonomically designed with power, electronics and artificial intelligence (AI) algorithms. It can sense every movement of the lower limbs and provide support at the right time.

According to the group, it can operate continuously for more than five hours.  The product is currently in the trial operation phase, and the company plans to launch 200 units on the market in early March.

more insights

https://www.nature.com/articles/s41467-025-63929-7

http://english.cas.cn/newsroom/research_news/life/202510/t20251014_1089412.shtml

The group around Jian XU from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has developed a fully automated “Digital Colony Picker” (DCP). This device identifies and retrieves high-performance microbial clones by simultaneously monitoring their growth and metabolite production—eliminating the need for culture plates, sampling needles, or manual picking.

Designed for the “design-build-test-learn” framework widely adopted in synthetic biology, the DCP streamlines the traditionally slow, labor-intensive “test” phase into a fast, parallel workflow with little hands-on time. It has a microfluidic chip containing 16,000 addressable microchambers that isolate single cells and track their expansion into micro-colonies. An integrated AI engine conducts time-lapse analysis of both brightfield and biosensor signals to quantify growth kinetics and metabolite production in real time. Once target colonies are identified, a laser-induced bubble technique exports them as droplets directly into standard culture plates. This contact-free transfer minimizes cross-contamination and preserves cell viability.

The equipment which was tested for identifying high-yield or lactate-tolerant Zymomonas mobilis mutants is  broadly applicable to adaptive evolution studies, functional gene discovery, and phenotype screening across diverse microbial species.

http://english.cas.cn/newsroom/research_news/life/202510/t20251010_1089023.shtml

https://www.cell.com/plant-communications/pdf/S2590-3462(25)00296-2.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2590346225002962%3Fshowall%3Dtrue

A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences has identified a specific histone modification as the key regulator governing microalgae’s adaptation to low-CO2environments.

The study focused on Nannochloropsis oceanica, tracking its epigenomic dynamics as it transitioned from an environment with 5% CO2 to one with just 0.01% CO2. Using multi-dimensional epigenomic sequencing techniques, the researchers discovered that global DNA methylation in the alga remained stable at 0.13%, effectively ruling out DNA methylation as a major driver of its low-CO2response. By contrast, H3K4me2 methylationwas found to be closely associated with 43.1% of the genes that respond to low-CO2 conditions. These genes include those critical to photosynthesis and ribosome biogenesis, two processes essential for the alga’s survival under carbon-limited stress. Further analysis revealed that H3K4me2 appears to regulate gene transcription by altering chromatin accessibility, a mechanism that aligns with its role as a central regulator of low-CO2 adaptation.

To validate their findings, the team used CRISPR/Cas9 gene-editing technology. They knocked out NO24G02310—a gene that encodes an H3K4 methyltransferase, the enzyme responsible for adding methyl groups to H3K4. The modified algae showed a roughly 22% reduction in growth rate and a 15% decrease in biomass. Additionally, the levels of another histone modification (H3K4me1) dropped, and the genome-wide localization of H3K4me2 shifted—providing direct evidence of H3K4me2’s role in low-CO2 adaptation. Further experiments uncovered that H3K4 modification may act via two pathways: by regulating enzyme networks and by modulating chloroplast transmembrane pH gradients. Both mechanisms work to optimize the alga’s use of available CO2, enhancing its survival under low-carbon conditions.

Nachrichten aus der Chemie (2025) 73, p. 37 – 39 (in English)

Raman article

Back to …