A record high! 15 Qingdao achievements won National Science and Technology Awards

http://qdstc.qingdao.gov.cn/kjdt/bskjdt/202407/t20240702_8109856.shtml

The 2023 National Science and Technology Awards were announced in Beijing. From a total of 262 projects and candidates,15 achievements in Qingdao won the National Science and Technology Award

Qingdao hosted and completed 2 award-winning projects, participated in the completion of 13 award-winning projects – Including 1 special prize, 1 first prize, 11 second prizes.

5 of the award-winning Qingdao projects are in the maritime field, namely:

  • “Key Technology Equipment and Application of Deep Sea Image Detection”
  • Offshore Petroleum Engineering (Qingdao) Co., Ltd. participated in and completed the “‘Shenhai No. 1’ ultra-deepwater gas field development project key technology and application” project, which won the first prize of the National Science and Technology Progress Award
  • “Construction and Industrial Application of Precision Nutrition Technology System for Marine Cultured Fishes” led by the Ocean University of China and participated by the Yellow Sea Fisheries Research Institute of the Chinese Academy of Fishery Sciences.
  • “Theoretical and Technological Innovation and Major Discovery of Deep Oil and Gas Exploration in Fault Zones” project, and the
  • “Key Technologies and Applications for Beach Protection and Restoration of Complex Coastal Environments” participated by Ocean University of China won the second prize of the National Science and Technology Progress Award.

In addition, Qingdao’s participation in award-winning projects has high “gold content” and broad influence. Among them, the “Fuxing High-Speed ​​Train” project completed by CRRC Qingdao Sifang Rolling Stock Co., Ltd. and CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd. won the special prize of the National Science and Technology Progress Award. The “Fuxing” high-speed train is a new generation of high-speed train independently developed by China and with complete intellectual property rights. With a maximum speed of 350 kilometers per hour, China has become the country with the fastest commercial operation of high-speed rail in the world. This record remains to this day. As of the beginning of this year, the “Fuxing” high-speed train has transported more than 2.2 billion passengers.

Enterprise innovation is the fundamental driving force and internal source of innovation. Among the Qingdao award-winners, 9 projects have enterprises taking the lead in completing and deeply participating in them. For example, the “Technological Innovation and Industrialization of Temperature and Humidity Oxygen Magnetic Multi-dimensional Precision Control of Household Preservation Appliances” project led by Haier Smart Home Co., Ltd. and participated by Qingdao Haier Refrigerator Co., Ltd. won the second prize of the National Science and Technology Progress Award; Tsingtao Brewery Co., Ltd. The project “Efficient Breeding and Optimization of Key Technologies and Applications of Food Biomanufacturing Industrial Strain”, as the main completion unit, won the second prize of the National Science and Technology Progress Award.

more insights

http://english.qibebt.cas.cn/ne/rp/202504/t20250407_909473.html

https://pubs.acs.org/doi/10.1021/jacs.4c18730

A research team from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) has introduced a novel membrane design that mimics biological protein channels to enhance proton transport for efficient energy harvesting. Inspired by the ClC-ec1 antiporter found in Escherichia coli, which facilitates the movement of chloride (Cl⁻) and protons, the researchers developed a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs). This ANF/COF composite forms a robust hydrogen-bonding network and features amide groups that selectively bind to Cl⁻ ions, significantly lowering the energy barrier for proton conduction.

In acidic environments, adding just 0.1% Cl⁻ ions (relative to protons) increased the membrane’s proton permeation rate threefold, reaching 9.8 mol m⁻² h⁻¹ for the efficient migration of H⁺ ions. Under simulated acidic wastewater conditions, the ANF/COF membrane achieved an output power density of 434.8 W m⁻²—one of the highest reported to date for osmotic energy generation. It also showed structural stability over 9,000 minutes (~150 hours) of operation in highly acidic media.

http://english.cas.cn/newsroom/research_news/chem/202504/t20250427_1042154.shtml

https://www.nature.com/articles/s41467-025-59188-1

A research team led by Prof. GAO Jun from the CAS Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) , in collaboration with researchers from Qingdao University, has developed an innovative membrane that mimics biological ion channels to achieve highly selective lithium ion separation from complex brines. Lithium, which is essential for batteries and clean energy technologies, is often found in low concentrations alongside high levels of sodium, potassium, magnesium, and calcium ions.

Inspired by biological ion channels, the team designed a sulfonic acid-functionalized covalent organic framework (COF)—r-TpPa-SO3H. The membrane’s randomly oriented nanocrystalline structure creates ultra-narrow, winding channels that can differentiate ions based on size and hydration energy. This unique structure enables an unconventional reverse-sieving mechanism that allows the selective passage of Na+, K+, and even divalent ions like Mg2+ and Ca2+ under an electric field while effectively blocking hydrated Li+ ions.

In laboratory tests, the membrane demonstrated remarkable Na+/Li+ and K+/Li+ selectivity, comparable to that of biological ion channels. Its performance remained stable in complex solutions, including real salt-lake brines. Under electrodialysis conditions, the membrane consistently removed major interfering ions, resulting in a lithium-enriched solution ready for downstream processing.

http://en.people.cn/n3/2025/0418/c90000-20304151.html

A 150,000-tonne deep-sea intelligent aquaculture vessel was delivered for use in Qingdao. The ship is 244.9 meters long and houses 15 breeding cabins with a total water holding capacity of nearly 100,000 cubic meters.

The ship-borne smart aquaculture system is expected to have an annual output of 3,600 tonnes of high-quality fish. The breeding cabins can be used to cultivate fish species such as large yellow croaker and salmon.

The new aquaculture vessel is an updated version of its 100,000-tonne predecessor delivered in 2022. Its predecessor has now already traveled over 17,000 nautical miles. The vessel pushed the aquaculture area from nearshore to deep sea, using high-quality seawater resources for breeding.

Back to …